Skip to main content

Account when the ancient Egyptians 2

Account when the ancient Egyptians 2

Beating the ancient Egyptians
Ancient Egyptians devised a way to make the calculation that we know the multiplication process in a way that the use of the combination, and the basic rule followed in the multiplier is numerical . We knew that the ways in which they use them in the account by what we found their tracks in the form of manuscripts such as Papyrus de Moscou and Manuscript Papyrus Rhind. And explain how the successive doubling in the beatings of the following examples :
Example 1 : We want the product 7 . 9 = 63
For result holds beatings , Egyptian writer begins to multiply the number 7 in a row and looking for a result milled (8 + 1 ) , as follows :
> 1 ............. 7
2 .......... 14
4 .......... 28
> 8 .......... 56
16 .......... 112
9 .......... 63
By doubling up at 7 7 . 8 = 56 , and then adds them 7 Faihsal on the result , as the 7 + 56 = 63 .
Example 2 : We want the product 59 . 37 = 2183
Begin to double the number of 59 , respectively , as follows :
* 1 ............. 59
2 .......... 118
* 4 .......... 236
8 .......... 472
16 .......... 944
* 32 .......... 1888
37 .......... 2183
By doubling the 59 we first arrived to the two numbers multiplied by 32 . 59 = 1888 .
Then add it the product ( see the parameter lines ) : ( 4 + 1). 59 = 236 + 59 = 295 , we get the result 2183 .

Divisible by the ancient Egyptians
The division also depends on doubling the numbers respectively Previous explained with beatings, but with some differences to be adapted to meet the purpose .

Ancient Egyptian writer begins to double the number 3 the following steps :
1 .......... 3
2 .......... 6
4 .......... 12
> 8 .......... 24
> 16 ......... 48
32 ......... 96
> 64 .......... 192
88 .......... 264
And the appointment of teacher numbers collected by the index and up to score : 8 + 16 + 64 = 88 .

Example 2:
Past ideals is a simple example , it leads to the quotient of the integer contains no fractures.
In our example, the next lead the process of dividing the 212 ÷ 6 result containing fractions.
We start doubling the number 6 :
> 1 .... 6
> 2 .... 12
4 .... 24
8 .... 48
16 .... 96
> 32 .... 192
> 1 \ 3 .... 2
1 \ 3 +35 .... 212
We have doubled the number 6 until we got to the number 192 , and remained a difference between Nos. 212 and 192 only $ 20 . A review of the first two lines , we find that they fall number 18 and very remains No. 2 in which we find that one - third of the number 6 .
This gets on the outcome of the ancient Egyptian division and the note is as follows : 1 + 2 + 32 + 1 \ 3 = 1 \ 3 35
Example 3:
Egyptian writer was able also using multiplier method dividing the number of small to a large number .

Comparing 4 in relation to the number 7 , we find that the four slightly larger than half the 7 . This we find the first member of the solution, which is 1 /2.
In the next step begins Egyptian old doubling primarily ( 7 ), respectively, as usual :
1 .... 7
* 1 \ 2 .... 1 \ 2 3
1 \ 7 .... 1
* 1 \ 14 .... 1 \ 2
1 \ 1 +14 \ of 2 .... 4
We found the solution : it has come to fully divisor is the number 4 , and combine the two numbers wanted here , we get a solution : 1 \ 14 1 \ 2 .

1 ... 33
1> 2 ... 66
4 ... 132
8 ... 264
2 > 16 ... 528
3 > 32 ... 1056
4> 1 \ 4 ... 1 \ 4 8
5 > 1 \ 33 ... 1
6> 1 \ 44 ... 1 \ 4 1 \ 2
1 \ 44 + 1 \ 33 + 1 \ 4 + 50 ... 1660
And explain the method is as follows : We have doubled the number 33 five times consecutively and we got to number 1056 . We note that the collection of numbers parameter 1056 + 528 + 66 = 1650 . The difference between 1660 and 1650 is 10.
And begin the search for the 33 fractures and found that 10 containing 33 quarter and $ 1 \ 4 8. And became the missing number to supplement the 1660 is 3 \ 4 1 Any one and three quarters. One gives us the number 1 \ 33, and three - quarters are only 1 \ 2 and 1 \ 4 , and three - quarters of the number 1 \ 33 is 1 \ 44 . So we completed 1660 , and result divisible become : 1 \ 44 + 1 \ 33 + 1 \ 4 + 50 .

Rand manuscript
In manuscript Rand ancient Egyptian Rhind explains the expense of space and trigonometry , as we see in this image

Panel offerings
Panel colorful Princess Nfrtiapt of the old state (2565 -2590 BC) tomb at Giza and in front of the numbers of the various offerings. The Louvre, Paris.

Comments

Popular posts from this blog

Anubis ( God of Death )

Anubis ( God of Death ) Known in ancient Egyptian texts as (Inpw), namely: ( royal son ) . It is noteworthy that the word ( inp ) means: ( rot ), which shows the link Idol " Anubis " corpses and the dead , those that rot if kept well preserved . Others consider that the word in the sense : ( annexation , linking, wrapped in a roll ), which would mummy wrapped in linen wrap , which is " Anubis " g uarded . While some interpreted the word to mean (Prince , royalist child ) , a metaphor for the membership of filiation Idol " Auxerre ." The Egyptian character name " INBO " in Greek , " Anubis " after the addition of the letter ( s ) evidencing flags. The Idol " Anubis " is the fourth son of the god "Ra " , and in another novel in the Late Period stated that " grew panels " ( Nephthys ) has carried its " Auxerre "; and fear of her husband, " six" threw him in somewhere in...

المعلومات الأساسية الجمهورية الموريتانية Basic information Republic of Mauritania

Islamic Republic of Mauritania Basic information Islamic Republic of Mauritania , basic information about the Islamic Republic of Mauritania - Area: one million and 30 thousand and 700 km 2 - Population : about 3 million people. - Capital: Nouakchott . - The most important cities : Nouadhibou , Okjojit , Atar , Chinguetti , his governors , Kaúada , Tejkjh . - Official language: Arabic . - National Day: November 28. - Independence : 1960. - Administrative division : 12 states in addition to the capital , Nouakchott , and the United States are : Grace , eyes, Kiffa , كيهيدي the Wallach , Rosso , frame, Nouadhibou , تجكجة , Seeley Bape , Zouérat , اكجوجت . - Code - Code : MR - Time : Winter same as Greenwich Mean Time , more than one hour in the summer. - Currency : MRO ounce in U.S. dollar = 250 oz . - Currency categories : paper ( 100 , 200, 500.1000 ) an ounce , metal ( 1,2,5,10 , 20 ) oz. - Rules currency : not allowed to enter or out the Mauritanian ounce , and change c...

كلمات من اصل فرعونى

هناك كلمات متداولة كثيرا و هي في الاصل فرعونية   كما هو اتي في الموضوع الحالي كلمات لها اصول : يا مطرة (رخيها رخيها)... وهي الكلمة (رخ) فرعونية ومعناها ينزل. . وكلمة الفول (المدمس) و مدمس فرعونية اصل وهي (متمس) اي المدفون. (البيصارة) ـاصلها الفرعوني (بيصورو) ومعناه الفول المطبوخ. ديه اشياء (ياما) ـكلمة ياما هي كلمة (اما) ومعناهاالكثير. العيش (باش) خلاص ـكلمة باش كلمة مش عربية ولكن فرعونية ومعناها لان او طري. (كاني وماني) مثل ـ قعد يقوللي كاني وماني ـكاني وماني ليس كلمات عربية ولكن فرعونية ومعناها سمن وعسل. ولما واحد متغاظ من واحد ويقول لهايوة يرد عليه ويقول ـ جاك (اوا) , كلمة( اوا) علي فكرة اصلا كلمة فرعوني و معناهاالويل والحسرة. . النهارد الجو (صهد) ـ كلمة صهد ليس عربية ولكن فرعونيةومعناها نار او لهيب. لما الفجر (يشاءشاء) ـ يشاءشاء اصلا هي (شاهشا) الفرعونية ومعناها يسطع اوانار. النهاردة الكل (هابئ) من البيت ـ كلمة هابئ اصلا هي الكلمةالفرعونية (هبق) ومعناها المشي الكثيراو الجري. ...